才塾 定期テスト対策

数学 中2 4章 平行と合同 角と平行線 第2回(全18問)

2


ページがちゃんと表示されるまで$10$秒くらいかかります。印刷するときは、ちょっと待ってからにしてください。
$ \boxed{\phantom{ho}}$←ここに四角形が表示されていたら準備OKです。

問題をクリックすると答えがでます。

以下の問いに答えなさい。

対頂角
(1) 右の図で対頂角になっているのは、どの角とどの角か。2組あげなさい。


答え
$\angle a$と$\angle c$
$\angle b$と$\angle d$

同位角錯角
(2) 右の図で同位角になっているのは、どの角とどの角か。4組あげなさい。また、錯角になっているのは、どの角とどの角か。2組あげなさい。

答え
同位角… $\angle a$と$\angle e$, $\angle b$と$\angle f$, $\angle c$と$\angle g$, $\angle d$と$\angle h$
錯角… $\angle c$と$\angle e$, $\angle d$と$\angle f$,

対頂角
(3) 右の図で、$\angle x$, $\angle y$ の大きさをそれぞれ求めなさい。


答え
$\angle x=62^{ \circ }$, $\angle y=86^{ \circ }$

同位角錯角
(4) 右の図で、$l /\!/ m$ のとき、$\angle x$, $\angle y$ の大きさをそれぞれ求めなさい。


答え
$\angle x=98^{ \circ }$, $\angle y=99^{ \circ }$

(5) 下の図で、$\angle x$, $\angle y$, $\angle z$ の大きさをそれぞれ求めなさい。ただし、$l /\!/ m$ とする。 三角形

答え
$\angle x=116^{ \circ }$, $\angle y=57^{ \circ }$, $\angle z=45^{ \circ }$

POINT

$x=69+47\\y+48=63+42\\58+77+z=180$


(6) 下の図で、$\angle x$, $\angle y$, $\angle z$ の大きさをそれぞれ求めなさい。ただし、$l /\!/ m$ とする。

同位角錯角、三角形

答え
$\angle x=28^{ \circ }$, $\angle y=41^{ \circ }$, $\angle z=31^{ \circ }$

POINT

※補助線をひいて考えます。色のついた部分の大きさがおなじです。
※最後の問題は、$A+B+C=D$になります。よく出てくる形なので、「この形は $A+B+C=D$」とおぼえてしまいましょう。また、なぜそうなるのか説明しなさいという問題もよくあるので、説明できるようにしておきましょう。 同位角錯角、三角形


(7) 下の図で、$\angle x$, $\angle y$ の大きさをそれぞれ求めなさい。ただし、〇のついている角同士、×のついている角同士等しいものとする。

三角形

答え
$\angle x=128^{ \circ }$, $\angle y=82^{ \circ }$

POINT

※$x$ の求め方 \begin{eqnarray*} ○&=&a^{ \circ },×=b^{ \circ } とすると、\\ 2a+2b+76&=&180\\ 2a+2b&=&104 \quad \class{mathbg-r}{(両辺を\div2)} \\ a+b&=&52\\ x&=&180-(a+b)\\ &=&180-52=128 \end{eqnarray*} ※$y$ の求め方 \begin{eqnarray*} ○&=&a^{ \circ },×=b^{ \circ } とすると、\\ a+b+131&=&180\\ a+b&=&49 \quad \class{mathbg-r}{(両辺に\times2)} \\ 2a+2b&=&98\\ y&=&180-(2a+2b)\\ &=&180-98=82 \end{eqnarray*}



(8) $n$ 角形の内角の和は(          )である。
(8) $n$ 角形の外角の和は(          )である。

答え
内角の和…$180^{ \circ }\times(n-2)$
外角の和…$360^{ \circ }$


(9) 十五角形の内角の和を求めなさい。

答え
$2340^{ \circ }$

POINT

$180\times(15-2)=2340$


(10) 内角の和が $1800^{ \circ }$ になる多角形は何角形ですか。

答え
十二角形

POINT

$1800\div180+2=12$


(11) 正二十角形の1つの内角の大きさは何度ですか。

答え
$162^{ \circ }$

POINT

$\{180\times(20-2)\}\div20=3240\div20=162$

別解 (外角の和$=360^{ \circ }$を利用する)←おすすめ
$180-(360\div20)=180-18=162$


(12) 正十五角形の1つの外角の大きさは何度ですか。

答え
$24^{ \circ }$

POINT

$360\div15=24$


(13) 1つの外角の大きさが $15^{ \circ }$になるのは正何角形ですか。

答え
正二十四角形

POINT

$360\div15=24$


(14) 1つの内角の大きさが $135^{ \circ }$になるのは正何角形ですか。

答え
正八角形

POINT

※内角が$135^{ \circ }$ということは、外角は$45^{ \circ }$だから、 $360\div45=8$


(15) 下の図で、$\angle x$, $\angle y$ の大きさをそれぞれ求めなさい。

多角形

答え
$\angle x=111^{ \circ }$, $\angle y=118^{ \circ }$

POINT

$x=540-(90+111+147+81)\\ y=180-\{360-(69+47+58+53+71)\}$

(16) 下の図で、$\angle x$, $\angle y$ の大きさをそれぞれ求めなさい。

五芒星、六芒星

答え
$\angle x=42^{ \circ }$, $\angle y=30^{ \circ }$

POINT

$x=180-(34+39+23+42)$
五芒星(ごぼうせい)は色のついた $5$ つの角の和が $180^{ \circ }$ になるとおぼえてしまいましょう。また、なぜこの $5$ つを足すと $180^{ \circ }$ になるのかもよく問われるので、その理由の説明ができるようにしておきましょう。
五芒星、六芒星 $y=180-(43+28+49+30)$
$y$ も $x$ とおなじように考えてしまえばよいです。

くさび形 (17) 右の図①で、$\angle a+\angle b +\angle c =\angle d$ である。

右の図②のように、$BD$ の延長と $AC$ との交点を $E$ とし、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しい性質を利用して、この理由を説明しなさい。




答え
$\triangle ABE$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle a +\angle b=\angle DEC$ …①
$\triangle CDE$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle DEC +\angle c=\angle d$ …②
①②により、$\angle a+\angle b +\angle c =\angle d$

POINT

くさび形 三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいです。

この性質を利用して、上の黄色の三角形で、$ \angle a +\angle b=\angle DEC$ です。

つぎに、下の緑の三角形で、$ \angle DEC +\angle c=\angle d$ です。

なので、$\angle a+\angle b +\angle c =\angle d$

五芒星 (18) 右の図で、
$\angle a+$ $\angle b+$ $\angle c+$ $\angle d+$ $\angle e$ $=180^{ \circ }$ である。この理由を説明しなさい。



答え
$\triangle ABH$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle a +\angle b=\angle EHI$ …①
$\triangle CDI$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle c +\angle d=\angle EIH$ …②
$\triangle EHI$ で、三角形の内角の和は $180^{ \circ }$ だから、①②により、 $\angle a+$ $\angle b+$ $\angle c+$ $\angle d+$ $\angle e$ $=180^{ \circ }$

POINT

五芒星 三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいです。

この性質を利用して、黄色の三角形で、$ \angle a +\angle b=\angle EHI$ です。


つぎに、その下の緑の三角形で、$ \angle c +\angle d=\angle EIH$ です。



三角形の内角の和は $180^{ \circ }$ ですから、いちばん下の水色の三角形で、
$\angle a+$ $\angle b+$ $\angle c+$ $\angle d+$ $\angle e$ $=180^{ \circ }$




 答え(中2 4章 平行と合同 角と平行線 第2回) 

(1)$\angle a$と$\angle c$, $\angle b$と$\angle d$
(2)同位角… $\angle a$と$\angle e$, $\angle b$と$\angle f$, $\angle c$と$\angle g$, $\angle d$と$\angle h$
 錯角… $\angle c$と$\angle e$, $\angle d$と$\angle f$
(3)$\angle x=62^{ \circ }$, $\angle y=86^{ \circ }$
(4)$\angle x=98^{ \circ }$, $\angle y=99^{ \circ }$
(5)$\angle x=116^{ \circ }$, $\angle y=57^{ \circ }$, $\angle z=45^{ \circ }$
(6)$\angle x=28^{ \circ }$, $\angle y=41^{ \circ }$, $\angle z=31^{ \circ }$
(7)$\angle x=128^{ \circ }$, $\angle y=82^{ \circ }$
(8)内角の和…$180^{ \circ }\times(n-2)$,  外角の和…$360^{ \circ }$
(9)$2340^{ \circ }$
(10)十二角形
(11)$162^{ \circ }$
(12)$24^{ \circ }$
(13)正二十四角形
(14)正八角形
(15)$\angle x=111^{ \circ }$, $\angle y=118^{ \circ }$
(16)$\angle x=42^{ \circ }$, $\angle y=30^{ \circ }$
(17)$\triangle ABE$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle a +\angle b=\angle DEC$ …①
$\triangle CDE$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle DEC +\angle c=\angle d$ …②
①②により、$\angle a+\angle b +\angle c =\angle d$
(18)$\triangle ABH$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle a +\angle b=\angle EHI$ …①
$\triangle CDI$ で、三角形の $1$つの外角は、それととなりあわない $2$つの内角の和に等しいから、
$ \angle c +\angle d=\angle EIH$ …②
$\triangle EHI$ で、三角形の内角の和は $180^{ \circ }$ だから、①②により、 $\angle a+$ $\angle b+$ $\angle c+$ $\angle d+$ $\angle e$ $=180^{ \circ }$

top

saijuku0222